
Revista Científica Multidisciplinaria: "EcoSur - Innovación, Tecnología y Desarrollo Sostenible de América Latina". Vol. 1, No 8.

(julio - diciembre 2025) ISSN 2960-8376.

https://doi.org/10.61582/mj0qbn93

El Bosquete Matovelle del Parque Metropolitano de Quito como recurso didáctico en Biología.

The Matovelle Grove of the Metropolitan Park of Quito as a didactic resource in Biology.

Jonathan Javier Chalco Naranjo^{1*}

¹Unidad Educativa Liceo Matovelle.

Área de Ciencias Naturales.

Quito-Pichincha. Ecuador.

ORCID: https://orcid.org/0000-0001-5296-845X
Correo: dj jon19@hotmail.com

*Autor para correspondencia: dj_jon19@hotmail.com

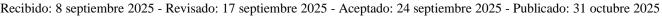
Resumen

Los entornos naturales son ambientes de aprendizaje que permiten fomentar la interacción y fortalecer el aprendizaje de los estudiantes, por esa razón el Bosquete Matovelle del Parque Metropolitano Guangüiltagua de la ciudad de Quito fue considerado como un ambiente de aprendizaje no solo por su biodiversidad, sino también para una mejor comprensión de los conceptos biológicos de la asignatura de Biología y de la aplicación de los Objetivos de Desarrollo Sostenible. El objetivo fue recabar información acerca de este entorno como un ambiente educativo de aprendizaje. Para esta investigación se utilizó un enfoque mixto, bibliográfico y de campo, así como también de encuestas con preguntas cerradas en la escala de Likert aplicadas a 55 estudiantes de Bachillerato general Unificado. Los resultados mostraron que los estudiantes presentaron una mayor adquisición en la comprensión de conceptos biológicos cuando el aprendizaje se basa en la experiencia. Las conclusiones indican que el Bosquete Matovelle se considera como un ambiente educativo para el aprendizaje de la Biología y que su biodiversidad mantiene conexión con los contenidos del Bachillerato General Unificado, por ese motivo los ambientes de aprendizaje deben estar integrados en el currículo para mejorar de manera significativa el proceso de enseñanza-aprendizaje en los estudiantes. Este estudio evidencia que los entornos naturales son considerados como un aporte para fomentar una cultura científica y de sensibilización por el medio ambiente.

Palabras clave: Biología, ambiente de aprendizaje, aprendizaje experiencial, biodiversidad, ODS.

Abstract

Natural environments are learning environments that allow to promote interaction and strengthen student learning, for that reason the Matovelle Grove of the Guangüiltagua Metropolitan Park in the city of Quito, was considered as a learning environment not only for its biodiversity, but also for a better understanding of the biological concepts of the subject of Biology and the application of the Sustainable Development Goals. The objective was to collect information about this environment as an educational



E-mail: editorial@ecosur.gopsapp.com

1

Revista Científica Multidisciplinaria: "EcoSur - Innovación, Tecnología y Desarrollo Sostenible de América Latina". Vol. 1, No 8. (julio - diciembre 2025) ISSN 2960-8376.

https://doi.org/10.61582/mj0qbn93

learning environment. For this research, a mixed, bibliographic and field approach was used, as well as surveys with closed questions on the Likert scale applied to 55 students of the Unified General Baccalaureate. The results showed that students presented a greater acquisition in the understanding of biological concepts when learning is based on experience. The conclusions indicate that the Matovelle Grove is considered as an educational environment for the learning of Biology and that its biodiversity maintains connection with the contents of the Unified General Baccalaureate, for this reason the learning environments must be integrated into the curriculum to significantly improve the teachinglearning process in students. This study shows that natural environments are considered as a contribution to promoting a scientific culture and awareness of the environment.

Keywords: Biology, learning environment, experiential learning, biodiversity, SDGs.

I. Introducción

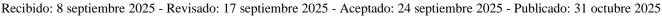
Una de las necesidades para mejorar la enseñanza de la Biología es la experiencia práctica y directa en los sitios donde se pueden explorar nuevos entornos naturales para considerarlos como recursos educativos. Un ejemplo, es el Bosquete Matovelle, a este lugar no solo se lo considera como un ecosistema, sino que también, como un entorno ideal para el aprendizaje mediante la experiencia. El estudio de este artículo se justificó debido a que los métodos educativos tradicionales no impulsan a generar el interés y una comprensión conceptual del campo de la Biología.

Para el desarrollo de este marco teórico se consideró a la teoría del aprendizaje de David Kolb de 1984, en donde menciona que el conocimiento se puede construir mediante la experiencia directa en el entorno para un mejor desenvolvimiento y aprendizaje en los estudiantes. De ese modo el aprendizaje a través de la experiencia promueve una mejor relación entre estudiantes y docentes, tanto fuera como dentro de las aulas.

Por otro lado, existen estudios previos que pueden demostrar los beneficios para docentes y estudiantes cuando el aprendizaje se desarrolla en entornos naturales. Es así como en su libro [1] afirma que se aprende mejor cuando se vive en directo la experiencia y se la pone en práctica para enriquecer los conocimientos, de este modo los docentes y estudiantes que forman parte del proceso educativo son beneficiados en términos de motivación, haciendo que la actividad sea productiva y enriquecedora. Mientras que en Chile un estudio realizado por [2] establecen que en el contexto educativo los docentes no brindan soporte para que los estudiantes se relacionen con un ambiente natural, ya que solo se planifica para cumplir con los lineamientos del currículo dejando de lado los beneficios que conlleva desarrollar las actividades en un entorno natural donde tanto docentes y estudiantes se beneficien del aprendizaje experiencial. Por tanto, los autores afirman que al no existir actividades en entornos naturales se limita el desarrollo cognitivo, psicológico y social en los estudiantes.

Además, estudios internacionales destacan la importancia de los entornos naturales como ambientes de aprendizaje como en el caso de [3] donde analizan que el aprendizaje in situ mejora la comprensión y permite analizar la problemática local. Así mismo [4] proponen que las áreas de recreación no sean vistas como espacios naturales, sino como entornos para el desarrollo de la educación. Los autores mencionan que estos espacios pueden incorporarse en el currículo para que los estudiantes se relacionen directamente con el campo de la sostenibilidad y biodiversidad.

En [5] resaltan que para mejorar la motivación y facilitar el aprendizaje significativo es necesario e importante la interacción con la naturaleza.



Revista Científica Multidisciplinaria: "EcoSur - Innovación, Tecnología y Desarrollo Sostenible de América Latina". Vol. 1, No 8.

(julio - diciembre 2025) ISSN 2960-8376.

https://doi.org/10.61582/mj0qbn93

Por último, existe un artículo de [6] donde hablan acerca de las diferentes perspectivas pedagógicas de la educación al aire libre. Los autores concluyen que este tipo de educación es fundamental para el desarrollo cognitivo de los estudiantes.

Pese a estos antecedentes, existe un vacío académico en el contexto de la ciudad de Quito: son pocos los estudios que han permitido una evaluación formal de los espacios como un entorno natural de aprendizaje, interés y comprensión, en este caso el Bosquete Matovelle. Lo que se pretende cubrir académicamente con este estudio es la comprensión de conceptos científicos de manera aplicada, así como también la relación entre la teoría y la práctica.

La hipótesis que se planteó para este estudio fue si el Bosquete Matovelle puede mejorar el interés y la comprensión de los estudiantes para estudiar Biología.

El objetivo de estudio fue recabar información sobre este entorno natural como un recurso educativo en la ciudad de Quito.

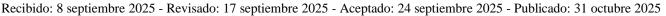
II. Materiales y métodos

Se emplearon materiales para intervenir en el suelo tales como: palas, rastrillos, costales, guantes de jardinería, plantas y abono, así como también de una guía de observación que fue aplicada en el Bosquete Matovelle, conformada por los contenidos de Biología del Bachillerato General Unificado, y, para determinar el proceso de enseñanza-aprendizaje se utilizó una encuesta de 15 preguntas cerradas en la escala de Likert para los estudiantes (Tabla 2). El instrumento tuvo la validación por parte de la Ph.D. Concepción Marcillo (Anexo 1) y para garantizar la confiabilidad se calculó el Alpha de Cronbach cuyo coeficiente fue de 0.89. El estudio se llevó a cabo mediante un enfoque mixto ya que combinó elementos cuantitativos como es la medición mediante encuestas tipo Likert y análisis estadístico como el Alpha de Cronbach, con elementos cualitativos (interpretación de percepciones y experiencias de los estudiantes). En este estudio participaron 55 estudiantes matriculados en Primero y Segundo de Bachillerato que pertenecen al Programa de Participación Estudiantil. Los datos se recolectaron mediante observaciones directas y con encuestas, estas permitieron evaluar el nivel de conocimiento de la biodiversidad antes y después de la visita al Bosquete Matovelle. Los datos de las encuestas se registraron en Google Forms y la tabulación y la obtención de gráficos estadísticos fue a través de la herramienta Excel. El estudio respeta la confidencialidad y participación de los estudiantes, al inicio de cada año en el contrato de prestación y servicios existe la cláusula para difundir imágenes de los estudiantes con el uniforme institucional.

Marco muestral

Tabla 1. Cantidad de estudiantes por género y por cursos

Cursos	Paralelos	Total, mujeres		Tota	al, hombres	Total, por curso	Técnica / instrumento
1ero BGU	A	14	51.85%	13	48.14%	27	Encuesta / Cuestionario
2do BGU	A	13	46.42%	15	53.57%	28	Encuesta / Cuestionario


Fuente: Elaboración propia

(julio - diciembre 2025) ISSN 2960-8376.

https://doi.org/10.61582/mj0qbn93

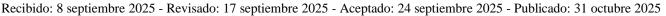
Fiabilidad

Para evaluar la fiabilidad de los ítems se ha calculado el Alpha de Cronbach en un cuestionario para determinar si todas las preguntas miden el mismo concepto de manera consistente y coherente.

Tabla 2. Varianzas por ítems

Pregunta	Varianza_item
1. ¿La visita al Bosquete Matovelle aumentó su interés por la Biología?	0,90
2. ¿Aprendió nuevos conceptos biológicos durante la visita al Bosquete Matovelle?	0,72
3. ¿La experiencia en el Bosquete Matovelle le ayudó a comprender mejor el concepto de biodiversidad?	0,58
4. ¿Las actividades realizadas en el Bosquete Matovelle fueron relevantes para sus estudios en Biología?	0,72
5. ¿Se siente más consciente de la importancia de la conservación del medio ambiente después de la visita?	0,28
6. ¿La información proporcionada por el docente fue clara y comprensible?	0,10
7. ¿Las observaciones de campo realizadas en el Bosquete Matovelle fueron útiles para su aprendizaje?	0,47
8. ¿Se siente más motivado a participar en actividades de conservación ambiental después de la visita?	0,57
9. ¿La experiencia en el Bosquete Matovelle fue más efectiva que las clases tradicionales de Biología?	0,90
10. ¿Considera que las visitas al Bosquete Matovelle deberían ser una parte regular de la asignatura de Biología?	0,61
11. ¿Las actividades prácticas realizadas en el Bosquete Matovelle fueron adecuadas para su nivel de estudio?	0,65
12. ¿La visita al Bosquete Matovelle fomentó su capacidad para observar y analizar la naturaleza?	0,45
13. ¿Los recursos y materiales utilizados en la visita al Bosquete Matovelle fueron suficientes y adecuados?	0,42
14. ¿La experiencia en el Bosquete Matovelle le ha inspirado a aprender más sobre la Biología y Ecología?	0,86
15. ¿Recomendaría la visita al Bosquete Matovelle a estudiantes de básica superior, media y elemental?	0,50

Fuente: Elaboración propia


Cálculo del Alpha de Cronbach

$$\alpha = \frac{K}{K-1} \left[1 - \frac{\sum S_i^2}{S_T^2} \right]$$

https://doi.org/10.61582/mj0qbn93

	Tabla 3. Alpha de Cronbach				
α	Coeficiente de confiabilidad del instrumento				
k	Número de ítems del instrumento	15			
$\sum_{i=1}^k S_i^2:$	Sumatoria de las varianzas de los ítems	8,73			
S_t^2 :	Varianza total del instrumento	52,25			

Fuente: Elaboración propia

Este cálculo ha permitido determinar que la confiabilidad del instrumento se encuentra dentro del rango de aceptación.

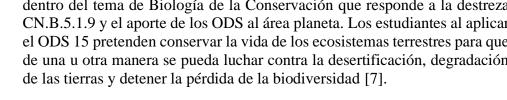
III. Resultados

En la siguiente tabla se adjuntaron las actividades y hallazgos que pueden ser utilizados como recursos didácticos en el aprendizaje de Biología.

Tabla 4. Recopilación de actividades y descripciones.

Nivel del BGU y descripción

Elemento del bosquete / Temática



Primero

Figuras 1 y 2. Conservación y Sostenibilidad Parque Metropolitano Guangüiltagua- 25 de marzo de 2025

Los estudiantes de las figuras 1 y 2 realizaron actividades de conservación del suelo y la aplicación del ODS 15. Esta actividad puede ser analizada dentro del tema de Biología de la Conservación que responde a la destreza CN.B.5.1.9 y el aporte de los ODS al área planeta. Los estudiantes al aplicar el ODS 15 pretenden conservar la vida de los ecosistemas terrestres para que de una u otra manera se pueda luchar contra la desertificación, degradación

Descripción

Primero

Figura 3. Metabolismo celular (fotosíntesis) - Tibouchina lepidota, Robinia pseudoacacia, Laurus nobilis

Parque Metropolitano Guangüiltagua- 25 de marzo de 2025

En la figura 3 se puede apreciar varias especies de plantas como son: Tibouchina, lepidota, Robinia pseudoacacia y Laurus nobilis, estas son plantas nativas y dentro de la parte curricular están ligadas a la siguiente destreza CN.B.5.1.19. Las variedades que se plantaron en el bosquete permitieron generar una reflexión en los estudiantes, la cual a través del proceso de la fotosíntesis las plantas pueden capturar el CO₂ y devolver el oxígeno, haciendo que el aire sea más puro.

Descripción

En el libro de [8] los autores hablan de la importancia del aprendizaje al aire libre, ellos concluyen que es un componente importante para la educación, sobre todo para un aprendizaje holístico y basado en la experiencia.

Primero

Figura 4. Clasificación taxonómica (plantas) - Tibouchina lepidota, Robinia pseudoacacia, Laurus nobilis, Parque Metropolitano Guangüiltagua- 25 de marzo de 2025

Figura 5 y 6. Clasificación taxonómica lagartijas - Stenocercus guentheri Parque Metropolitano Guangüiltagua- 25 de marzo de 2025

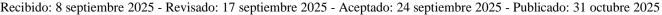

Figura 7. Clasificación taxonómica arácnidos - Lycosa erythrognatha Parque Metropolitano Guangüiltagua- 25 de marzo de 2025

Figura 8. Clasificación taxonómica (plantas) - Tibouchina lepidota, Robinia pseudoacacia Parque Metropolitano Guangüiltagua- 25 de marzo de 2025

Las plantas descritas en la figura 4 y fotografiadas en la imagen 8 (laurel, acacia blanca, flor de mayo y romerillo), las lagartijas de las figuras 5 y 6 y el arácnido de la figura 7 son especies animales y vegetales que se analizaron para poder realizar su descripción taxonómica según las bases propuestas por Carl Linneo en 1753.

Descripciones

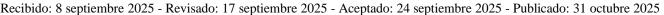
El sistema de clasificación de Linneo permitió agrupar las plantas y animales mediante taxones, que fueron dominio, reino, filo, clase, orden, familia, género y especie [9].

En el artículo de [10] hablan sobre cómo la exposición a espacios verdes afecta el desarrollo cognitivo de los estudiantes. Ellos destacan la idea para que el desarrollo cognitivo sea más significativo, siempre y cuando las actividades se desarrollen en entornos naturales.

Segundo

Figura 9. Especies nativas - Tibouchina lepidota, Robinia pseudoacacia Parque Metropolitano Guangüiltagua- 25 de marzo de 2025

Las plantas de la figura 9 son del tipo nativo. A diferencia de las plantas introducidas y endémicas, las nativas pueden crecer de forma natural en una zona específica para su diversificación. Los estudiantes antes de plantar tuvieron que realizar una comparación entre los tres tipos de plantas con el objetivo de no alterar un ecosistema y fortalecer la destreza curricular CN.B.5.1.19.


Descripción

La mejor opción para la creación de áreas verdes será con plantas nativas, debido a su fácil adquisición y su adaptación a las condiciones del medio en las que se encuentran [11].

https://doi.org/10.61582/mj0qbn93

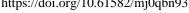
Segundo

Figura 10. Excavación del suelo Parque Metropolitano Guangüiltagua- 25 de marzo de 2025

Descripción

En la figura 10 se puede apreciar a una estudiante excavando el suelo. Para esto los estudiantes indagaron sobre las técnicas para excavar y perforar suelos con el objetivo de seleccionar un sitio adecuado donde los factores abióticos como la humedad y la exposición al Sol sean adecuadas para las plantas, así mismo consideraron la profundidad y el ancho del hueco como una técnica de excavación y perforación.

Segundo


Figura 11. Proceso de plantación - Tibouchina lepidota Parque Metropolitano Guangüiltagua- 25 de marzo de 2025

Descripción

En la figura 11 se puede observar el proceso de plantación, para esto los estudiantes previamente seleccionaron las plantas nativas para que generen un impacto positivo en el Bosquete. La técnica que indagaron constó en extender bien las raíces para finalizar con el relleno del hueco utilizando tierra abonada, con esta última se compactó adecuadamente el área donde se encuentra la planta para eliminar bolsas de aire.

La selección de un sitio adecuado es importante para el éxito del proceso de plantación. Los análisis de aptitud de tierras permiten determinar los tipos de especies a plantar para aprovechar la productividad del suelo [12].

Fuente: Elaboración propia

Tabla 5. Hallazgo de especies del Bosquete

		especies act Bosquete			
Especie del lugar	Nombre taxonómico	Bioseguridad			
Laurel	Laurus nobilis	Con el uso de palas se coloca el abono para no manipular directamente con la mano			
Acacia blanca	Robinia pseudoacacia	Composition do al voca do essentes entre de			
Flor de mayo	Tibouchina lepidota	 Se recomienda el uso de guantes antes de manipular el fertilizante 			
Romerillo	Podocarpus sprucei	- manipular er fertinzante			
Lagartija	Stenocercus guentheri	Se recomienda el uso de guantes si se va a			
Araña	Lycosa erythrognatha	manipular alguna especie animal			

Fuente: Elaboración propia

Para la identificación de la especie *Lycosa erythrognatha* la investigación se basó en el trabajo de [13] y para Stenocercus guentheri en el trabajo de [14].

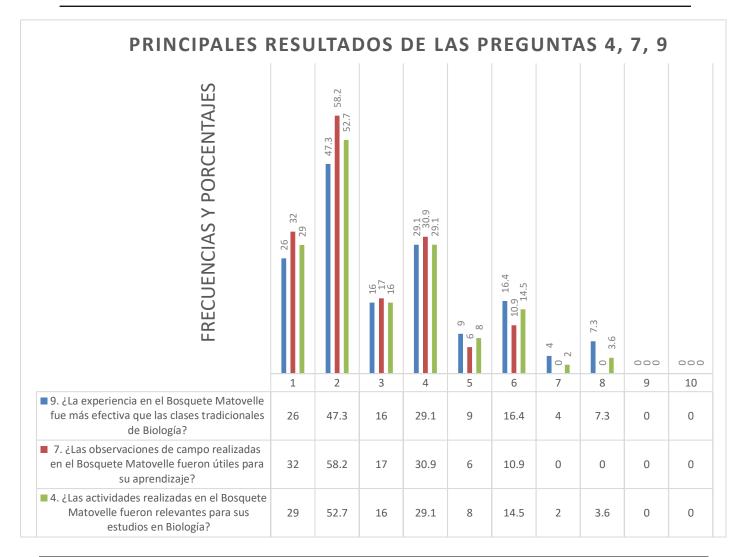
Operacionalización de los ODS

Tabla 6 Cuadro de operacionalización de los ODS

ODS	Meta	Indicador global	Evidencia en el estudio
4.7	Educación para el desarrollo sostenible	4.7.1	Incremento de conocimientos
15.1	Conservación ecosistemas	15.1.1	Actividades de plantación nativa
15.5	Pérdida biodiversidad	15.5.1	y alfabetización ecológica

Fuente: Elaboración propia

Con relación a la encuesta y para analizar el proceso de enseñanza-aprendizaje de la Biología en la Unidad Educativa, en las figuras 1, 2, 3 y 4 se muestran los principales resultados.


(julio - diciembre 2025) ISSN 2960-8376.

https://doi.org/10.61582/mj0qbn93

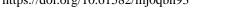
11ttps://doi.org/10.01362/111J0q01193

Recibido: 8 septiembre 2025 - Revisado: 17 septiembre 2025 - Aceptado: 24 septiembre 2025 - Publicado: 31 octubre 2025

Frecuencias	%	Siempre	%	Casi Siempre	%	A veces	%	Casi Nunca	%	Nunca	%
Columnas	le datos	1	2	3	4	5	6	7	8	9	10

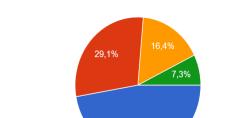
Figura 1. Principales resultados de la encuesta aplicada a estudiantes Fuente: Elaboración propia

Se tomaron en cuenta estas tres preguntas ya que abarcan tres dimensiones dentro del proceso de enseñanza aprendizaje como son:


Tabla 7. Dimensiones del proceso de aprendizaje

Comparación metodológica	Efectividad vs. clases tradicionales
Utilidad cognitiva	Observación como herramienta de aprendizaje
Pertinencia curricular	Relevancia de las actividades para los estudios

Fuente: Elaboración propia



Estas tres dimensiones proporcionan información valiosa para evaluar la calidad y el impacto del aprendizaje.

9. ¿La experiencia en el Bosquete Matovelle fue más efectiva que las clases tradicionales de Biología? 55 respuestas

SIEMPRE (5) CASI SIEMPRE (4) ALGUNAS VECES (3) CASI NUNCA (2) NUNCA (1) 47.3%

Gráfico 2: Ambientes de enseñanza-aprendizaje Fuente: Encuesta a estudiantes-Google Forms

Los procesos de enseñanza-aprendizaje de Biología tienen un desarrollo mayoritario en un ambiente áulico. Por lo tanto, es importante que los ambientes de enseñanza-aprendizaje se desarrollen en escenarios reales donde los estudiantes puedan aplicar los conocimientos alcanzados y así fomentar el trabajo en equipo, y, con base a la experiencia, la asignatura sea un punto referencial para el desarrollo de proyectos interdisciplinarios.

> 7. ¿Las observaciones de campo realizadas en el Bosquete Matovelle fueron útiles para su aprendizaje? 55 respuestas

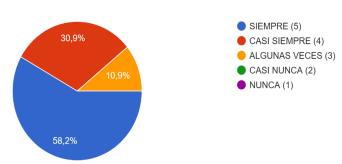


Gráfico 3: Proceso de aprendizaje Fuente: Encuesta a estudiantes-Google Forms

La observación como parte fundamental del método científico fue importante durante el desarrollo de las actividades. Esto permitió que la mayor parte de los estudiantes se familiaricen con las especies de plantas y animales, y, sobre todo de las técnicas utilizadas para seleccionar áreas adecuadas, excavar y plantar. La experiencia en este escenario real de aprendizaje permitió que cada uno trabaje y no se basen solo a una observación de un video donde se realizan actividades similares.

4. ¿Las actividades realizadas en el Bosquete Matovelle fueron relevantes para sus estudios en Biología?

55 respuestas

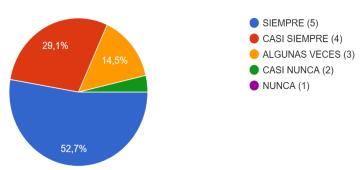


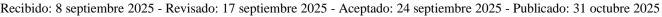
Gráfico 4: Relevancia de conocimientos Fuente: Encuesta a estudiantes-Google Forms

Las actividades de enseñanza-aprendizaje desarrolladas en el Bosquete fueron relevantes para el fortalecimiento de los conocimientos. Al manipular especies biológicas permitió que la mayor parte de los estudiantes tengan un acercamiento con la naturaleza y sus factores bióticos. Muchas de las veces al impartir una clase donde se utilizan ilustraciones y videos, no permiten generar un elevado grado de interés, sin embargo, la experiencia como tal permitió que muchos no tengan temor al manipular un animal, sino más bien tener un acercamiento y generar pasión por las ciencias biológicas y así fortalecer con lo adquirido en clase.

Las implicaciones prácticas de esta investigación determinaron que debe existir una concatenación entre los escenarios reales de aprendizaje y el currículo de Biología. Al existir una concatenación de este tipo se puede mejorar de manera significativa el aprendizaje de la Biología y de sus ejes transversales como son la educación ambiental y el cuidado del medio ambiente.

IV. Discusión

Los resultados obtenidos mostraron el cumplimiento de la hipótesis que se planteó. Se determinó que los estudiantes desarrollaron una mayor conciencia ambiental y sobre todo una mejora para el conocimiento en la asignatura de Biología. En comparación con otros estudios similares, estos resultados respaldan el aprendizaje mediante la experiencia en un entorno natural como una evidencia de enseñanza. Es así como en un trabajo de investigación que se titula Flora nativa del parque Metropolitano Itchimbía en el proyecto integrador con los estudiantes de décimo año de Educación General Básica de la Unidad Educativa Santiago de Guayaquil, año lectivo 2017-2018 – Distrito Metropolitano de Quito de [15] donde establece que existe un importante número de estudiantes que no cuidan el parque, ya sea por falta de conocimiento y/o ausencia de valores, siendo estos usuarios permanentes del parque, por lo cual, se requiere desarrollar un proceso orientado hacia la forja de una cultura ambiental que permita involucrar a los actores estudiantiles en su cuidado.


Se debe que tomar en cuenta que el presente estudio presentó ciertas limitaciones, entre ellas el tiempo reducido para intervenir, el número de estudiantes que participaron, así como también de los recursos logísticos como es el transporte para la salida hacia el lugar.

Revista Científica Multidisciplinaria: "EcoSur - Innovación, Tecnología y Desarrollo Sostenible de América Latina". Vol. 1, No 8. (julio - diciembre 2025) ISSN 2960-8376.

https://doi.org/10.61582/mj0qbn93

Estas limitaciones generaron una mayor restricción frente a los hallazgos ante otros contextos educativos. Como una propuesta de investigación a futuro se recomienda realizar un análisis acerca de los efectos de las prácticas educativas en otros ambientes de aprendizaje como es el caso de las áreas protegidas, museos, etc., para determinar cuál ofrece un mayor beneficio pedagógico.

V. Conclusiones

El Bosquete Matovelle es considerado como un ambiente educativo que ayuda a mejorar el proceso de enseñanza-aprendizaje de la Biología con el fin de fomentar el cuidado del medio ambiente, la apreciación por la biodiversidad y una mayor comprensión de los conceptos biológicos. Por tal razón se debe integrar en el currículo de Biología las salidas a los entornos naturales, como en este caso el Bosquete, para fomentar la aplicación de los ejes transversales a una educación que genere conciencia ambiental y sea más práctica.

Por otro lado, tras el desarrollo de esta investigación se determinó que los ambientes de aprendizaje para la Biología en la Unidad Educativa Liceo Matovelle son las aulas, la realidad de esta institución es similar a la de otras que se encuentran a nivel nacional. Es así como el proceso de enseñanza de la Biología mantiene un enfoque tradicionalista con el uso de materiales convencionales.

También se concluye que integrar los escenarios reales de aprendizaje dentro del currículo de Biología permite que los estudiantes mejoren su proceso de aprendizaje de forma significativa, ya que estos entornos les permiten aumentar su interés, aprender nuevos conceptos biológicos y generar una mayor conciencia para el cuidado y la preservación del medio ambiente.

Por último, los objetos biológicos como son: flor de mayo, acacias blancas, romerillos, laureles, arácnidos y lagartijas, son elementos que forman parte del Bosquete, y de acuerdo con sus características mantienen nexos con algunas temáticas de Biología en el Bachillerato General Unificado mismos que se pueden utilizar como recursos didácticos para el proceso de enseñanza-aprendizaje; y no hay que dejar de lado que las actividades dentro del Bosquete forman parte del proceso de enseñanza. Por lo tanto, cualquier ecosistema se lo podría considerar como un ambiente de aprendizaje para la Biología, así mismo permite el desarrollo de la interdisciplinariedad con otras asignaturas.

Revista Científica Multidisciplinaria: "EcoSur - Innovación, Tecnología y Desarrollo Sostenible de América Latina". Vol. 1, No 8.

(julio - diciembre 2025) ISSN 2960-8376.

https://doi.org/10.61582/mj0qbn93

Recibido: 8 septiembre 2025 - Revisado: 17 septiembre 2025 - Aceptado: 24 septiembre 2025 - Publicado: 31 octubre 2025

Agradecimiento:

Deseo expresar mi más sincero agradecimiento al Arq. Bolívar Efraín Muñoz, Coordinador Ejecutor de Procesos de la Gerencia de Administración de Parques y Espacios Verdes de la EPMMOP, por su invaluable apoyo, en la celebración del acta de compromiso con el objeto de coordinar acciones encaminadas a establecer vínculos de mutua ayuda y colaboración que permitan la suscripción de un Convenio de Cooperación vinculado al proceso de reforestación y voluntariado a ser ejecutados en el Parque Metropolitano del Distrito Metropolitano de Quito.

Asimismo, extiendo un especial reconocimiento a la MSc. Sandra M. Romero O., Rectora del Liceo Matovelle, por su confianza, acompañamiento y permanente motivación, que hicieron posible la culminación de este trabajo.

A ambos, les expreso mi profundo agradecimiento por su colaboración y por inspirar el compromiso con la ciencia, la educación y la conservación de nuestro patrimonio natural.

Declaración de ética:

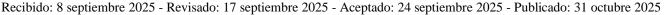
El autor declara que las imágenes incluidas en este artículo corresponden a actividades educativas desarrolladas en la Unidad Educativa Liceo Matovelle, en las cuales participaron estudiantes cuyos padres o representantes legales firmaron un consentimiento informado institucional que autoriza el uso de dichas imágenes con fines académicos, educativos y de divulgación científica.

Ninguna de las personas fotografiadas es identificable de manera directa, y las imágenes han sido seleccionadas cuidando la privacidad y el respeto hacia los participantes.

La revista EcoSur publica este material bajo la buena fe de la declaración del autor, quien asume la total responsabilidad ética y legal respecto a la obtención, validez y alcance de los consentimientos correspondientes.

Referencias

- [1] V. Baena Graciá, El Aprendizaje Experiencial como Metodología Docente, Colección universitaria, 2019.
- [2] F. Cordero Tapia, L. Silva Reyes y F. Castillo Retamal, «Actividades en entornos naturales: dificultades,importancia y beneficios en el contexto escolar,» *Viref Revista de Educación Física,* pp. 120,124,125, 2022.
- [3] G. Mannion y J. Lynch, «Place-based education and climate change,» *Environmental Education Research*, vol. 25, nº 5, pp. 769-784, 2019.
- [4] T. Hartig y P. Kahn, «Living in cities, naturally: A psychological reframing of urban nature,» *Human Ecology Review*, vol. 27, nº 2, pp. 65-87, 2021.



Revista Científica Multidisciplinaria: "EcoSur - Innovación, Tecnología y Desarrollo Sostenible de América Latina". Vol. 1, No 8.

(julio - diciembre 2025) ISSN 2960-8376.

https://doi.org/10.61582/mj0qbn93

- [5] R. Lumber, M. Richardson y D. Sheffield, «eyond knowing nature: Contact, emotion, compassion, meaning, and beauty are pathways to nature connection,» *Ecopsychology*, vol. 13, nº 1, pp. 20-29, 2021.
- [6] A. Szczepanski y R. Andersson, «Outdoor education and learning in early childhood: Perspectives on pedagogical approaches,» *Scandinavian Journal of Educational Research*, vol. 67, nº 1, pp. 85-101, 2023.
- [7] ONU, «Vida de Ecosistemas terrestres. ¿Por qué son importantes?,» 15 Octubre 2016. [En línea]. Available: https://www.un.org/sustainabledevelopment/es/wp-content/uploads/sites/3/2016/10/15_Spanish_Why_it_Matters.pdf.
- [8] R. Passy y P. Bentsen, Outdoor learning: Past, present and future, Routledge, 2022.
- [9] A. Nomdedeu-Rull, «La recepción del léxico de la taxonomía botánica de Linneo en los diccionarios del español,» *Asclepio*, vol. 73, nº 2, pp. 1-5, 2021.
- [10] P. Dadvand, J. Pujol y D. Macia, «Green spaces and cognitive development in primary schoolchildren,» *Proceedings of the National Academy of Sciences*, vol. 117, nº 45, pp. 78-84, 2020.
- [11] J. Andrade, J. Cruz y N. Oleas, «Uso de especies nativas como plantas ornamentales en el Distrito Metropolitano de Quito,» *CienciAmérica*, vol. 10, nº 2, pp. 1-3, 2021.
- [12] P. Hernández, J. Valdez, A. Aldrete y T. Martínez, «Evaluación multicriterio y multiobjetivo para optimizar la selección de áreas para establecer plantaciones forestales,» *Scielo*, 2019.
- [13] D. Guallasamín Barahona, «Repositorio PUCE,» 17 Junio 2024. [En línea]. Available: https://repositorio.puce.edu.ec/server/api/core/bitstreams/5855b574-bc3b-4161-abf5-51aed83352a1/content.
- [14] Z. Brito, «Repositorio USFQ,» 28 Mayo 2023. [En línea]. Available: https://repositorio.usfq.edu.ec/jspui/bitstream/23000/13018/1/325867.pdf.
- [15] R. Cáceres Flores, «Repositorio digital UCE,» Julio 2018. [En línea]. Available: http://www.dspace.uce.edu.ec/handle/25000/15986.

