Ecosur

Application and Comparison of LQR, LQG, and State Observer Controllers in Vehicle Suspension

Authors

  • GONZALEZ ARIEL

    Universidad Estatal Peninsula De Santa Elena
    Author

DOI:

https://doi.org/10.61582/nsf35m43

Keywords:

Observadores de estado, LQR, LQG, modelos, sistemas, controlador, sistema de suspensión

Abstract

The use of controllers represents advanced control techniques applied in vehicle suspension to enhance stability, comfort, and driving safety [1]. These techniques allow for the design of active suspension systems that dynamically respond to road conditions and vehicle behavior. Observer-based control is used to estimate system state variables that are not directly measurable [2]. In the context of vehicle suspension, an observer can estimate body speed and damper forces based on displacement and acceleration measurements. LQR (Linear Quadratic Regulator) is an optimal control technique that minimizes a quadratic cost function, generally including terms related to displacement, speed, and actuator energy [3]. In vehicle suspension, LQR aims to balance passenger comfort (by minimizing body accelerations) and tire grip on the road (by minimizing wheel displacement). This is achieved by adjusting the forces generated by the suspension actuators so the system responds optimally to road disturbances [4]. LQG (Linear Quadratic Gaussian) extends LQR by incorporating a state observer (like the Kalman filter) to handle uncertainties in measurements and system models [5]. This is particularly useful in vehicle suspension, where measurements can be noisy and models may not be entirely accurate.

Effective control in vehicle suspension is crucial as it directly affects vehicle safety, comfort, and stability. Without proper control, the suspension may not respond adequately to changing road conditions, resulting in decreased passenger comfort and increased difficulty in maintaining tire grip on the road. This can lead to dangerous situations, especially under adverse driving conditions. Implementing advanced control techniques like LQR and LQG is essential for ensuring optimal performance of the suspension system, enhancing the driving experience and overall vehicle safety. This paper will analyze and implement these controllers in a vehicle suspension model, assessing their effectiveness against simulated road disturbances using platforms that replicate a real-road scenario. The results will allow for a comparison of the efficacy of each controller and determine which offers the best performance in terms of stability and driving comfort.

References

J. F. D. y Y. H. C. Shi-Yuan Han, “Estrategia de control adaptativo difuso PID para la suspensi´on

activa del veh´ ıculo basada en la evaluaci´on de la carretera,” MDPI, pp. 1-10, 16 Marzo 2022.

H. S. y L. Nenggang Xie, “Control de rendimiento prescrito adaptativo basado en observadores de estado

extendido para una clase de sistemas no lineales con restricciones e incertidumbres de estado completo,”

Springer Link, p. 345–358, 12 Junio 2021.

IEEE, “El poder de los controladores lineales en el control LQR,” IEEE Xplore, pp. 1-30, 10 Enero 2023.

C. A. C.-T. Nelson Arzola de la Pe˜na, “An´alisis del comportamiento din´amico de una suspensi´on de

veh´ ıculo independiente de doble horquilla,” Logos Ciencia y Tecnologia, pp. 1-20, 03 Julio 2018.

L. F. M. K. N. L. Yang Zheng, “Muestra de complejidad del control gaussiano cuadr´atico lineal (LQG)

para sistemas de retroalimentaci´on de salida,” PMLR, pp. 1-20, 9 Febrero 2023.

“¿Qu´e es el sistema de suspensi´on y qu´ e tipos hay?,” Chery, pp. 1-10, 22 Junio 2024.

I. Taller, “Seguridad, estabilidad y confort: beneficios de la suspensi´on neum´atica frente a la helicoidal,”

Info Taller, pp. 1-10, 15 Marzo 2021.

H. R. Galbarro, “Sistema de Suspensi´ on en los Veh´ ıculos,” IngeMecanica, pp. 1-20, 10 Junio 2020.

A. H. M. S. F. A. Nelson G. Cotella, “ANALISIS DE LOS EFECTOS DE LAS IRREGULARIDADES

DE LA,” Cime, pp. 1-9, 10 Febrero 2018.

I. Mula Vivero, “Estudio del comportamiento din´amico de un veh´ ıculo utilizando la herramienta Sim

mechanics de MATLAB,” Archivo, pp. 1-20, Junio 2009.

MathWorks, “Vehicle Suspension System Templates,” MathWorks, 2023.

JOSE, “¿QU´ E ES LA MASA NO SUSPENDIDA Y C´ OMO AFECTA AL VEH´ ICULO?,” Club SEAT,

pp. 1-10, 12 Marzo 2021.

“Masa Suspendida y No Suspendida,” Tecnologia Del Automovil, pp. 1-10, 16 Febrero 2023.

D. Plaza, “´ Angulo de ca´ ıda o camber de ruedas, ¿qu´ e es y c´omo influye en el coche?,” Motor.es, pp. 1-5,

Diciembre 2020.

J. L. Sanches, “Fuerza El´astica o Restauradora,” FisicaLAB, pp. 1-10, 10 Junio 2023.

J. L.-C. ,. J. G.-A. ,. C. C.-R. ,. M. C.-O. ,. R. V.-F. ,. J. A.-Z. J.E. Escalante-Mart´ ıneza, “An´alisis del

coeficiente de amortiguamiento viscoso en un sistema masa-resorte-amortiguador utilizando PPLANE y

GEOGEBRA,” Revista mexicana de f´ ısica E, pp. 1-10, 22 Enero 2016.

M. J. L. B. V. D. B. L. B. Fernando Viadero-Monasterio, “Mejora del comportamiento lateral y vertical

de un veh´ ıculo mediante una suspensi´on activa,” ResearchGate, pp. 1-10, Octubre 2021.

A. P. Ochoa, “Controlador con Observador de Estados de Orden Completo para un motor de DC

mediante dSPACE,” pp. 1-9, 16 Octubre 2017.

E. G. Didier Giraldo, “CONTROL POR REALIMENTACI´ ON DE VARIABLES DE ESTADO US

ANDO UN OBSERVADOR ADAPTATIVO DE ESTADOS,” pp. 1-5, 1 Agosto 2007.

E. A. Braschi, Enfoque Practico Del Control Moderno, Lima: Universidad Peruana de Ciencias Aplicadas

S. A. C, 2014.

P. V. R. William Chamorro, “Regulador cuadr´atico lineal y control predictivo aplicados en un sistema

de cuatro tanques: una comparaci´on de rendimiento,” UTE, pp. 1-10, 30 Marzo 2018.

C. H. R. G. Miguel F. Ar´evalo-Castiblanco, “Controlador LQR y SMC Aplicado a Plataformas Pendu

lares,” ResearchGate, pp. 1-10, 1 Septiembre 2018.

L. E. G. Jaimes, “Universidad Peruana de Ciencias Aplicadas S. A. C,” pp. 1-15, 7 Agosto 2020.

D. P. F. Luis Eduardo Garc´ıa Jaimes, “Dise˜ no de un controlador lineal cuadr´atico gaussiano y un

controlador autosintonizado por asignaci´on de polos para el control del voltaje de un generador CD,”

SciElo, pp. 1-10, 29 Julio 2021.

Wikipedia, “Control lineal cuadr´atico gaussiano,” Wikipedia, pp. 1-3, 14 Julio 2023.

I. I. A. S. Hari Maghfiroh, ≪Speed Control of Induction Motor using LQG,≫ Journal of Robotic and

Control, pp. 1-10, 2021

Downloads

Published

2024-02-29

How to Cite

Application and Comparison of LQR, LQG, and State Observer Controllers in Vehicle Suspension. (2024). EcoSur: Innovation, Technology and Sustainable Development of Latin America, 1(05), 23. https://doi.org/10.61582/nsf35m43

Similar Articles

1-10 of 19

You may also start an advanced similarity search for this article.